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SIMPLE MULTISPECTRAL IMAGE ANALYSIS FOR

SYSTEMICALLY DISEASED CHICKEN IDENTIFICATION

C.−C. Yang,  K. Chao,  Y. R. Chen,  M. S. Kim,  H. L. Early

ABSTRACT. A simple multispectral differentiation method for the identification of systemically diseased chickens was
developed and demonstrated. Color differences between wholesome and systemically diseased chickens were used to select
interference filters at 488, 540, 580, and 610 nm for the multispectral imaging system. Over a period of 6 months, 660 chicken
images were collected in three batches. An image processing algorithm to locate the region of interest (ROI) was developed
in order to define four classification areas on each image: whole carcass (WC), region of interest (ROI), upper region (UR),
and lower region (LR). Three feature types, average intensity (AI), average normalization (AN), and average difference
normalization (ADN), were defined using several wavebands for a total of 12 classification features. A decision tree algorithm
was used to determine threshold values for each of the 12 classification features in each of the four classification areas. The
AI feature type was found to identify wholesome and systemically diseased chickens better than the AN and ADN features
types. Classification by AI in the ROI area, using the 540 and 580 nm wavebands, achieved the best accuracies. AI540 achieved
96.3% and 97.1% classification accuracies for wholesome and systemically diseased chickens, respectively. AI580 achieved
96.3% and 98.6% classification accuracies for wholesome and systemically diseased chickens, respectively. This simple
differentiation method shows potential for automated on−line chicken inspection.

Keywords. Food safety, Image classification, Machine vision, Region of interest, Poultry.

he Food Safety and Inspection Service (FSIS) of the
USDA has implemented the Hazard Analysis and
Critical Control Point (HACCP) system in poultry
plants to improve food safety and prevent food

safety hazards in the inspection process (USDA, 1996). FSIS
is also testing the proposed HACCP−based Inspection Mod-
els Project (HIMP) in a small number of volunteer poultry
processing plants to determine if FSIS inspectors and re-
sources can be used more effectively for the poultry inspec-
tion program. Performance standards are set at zero tolerance
for two Food Safety (FS) categories (i.e., fecal contamination
and infectious condition such as septicemia and toxemia) and
five non−safety Other Consumer Protection (OCP) catego-
ries under HIMP. For poultry plants to meet government food
safety regulations and satisfy consumer demand while main-
taining their competitiveness, FSIS has recognized the need
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for new inspection technologies (USDA, 1985), such as auto-
mated computer imaging inspection systems.

Recent research has investigated the development of
automated poultry inspection techniques based on spectral
imaging. Chao et al. (2002) developed a multispectral
imaging system using 540 and 700 nm wavelengths and
obtained accuracies of 94% for wholesome and 87% for
unwholesome chicken carcasses. Through hyperspectral
imaging, Park et al. (2002) achieved 97.3% to 100% accuracy
in identifying fecal and ingesta contamination of poultry
carcasses using images at the 434, 517, 565, and 628 nm
wavelengths. These studies found that spectral images
present spectral and spatial information from the surface of
chicken carcass, which is essential for efficient identification
of contaminated and systemically diseased chickens. Not
only can multispectral imaging achieve high classification
accuracies,  this non−destructive method also shows potential
for on−line inspections at high−speed processing plants.

Based on visible/near−infrared spectroscopy analysis,
previous studies have also shown that certain wavelengths
are particularly useful for the identification of diseased,
contaminated, or defective chicken carcasses (Chen and
Massie, 1993; Chao et al., 2003; Windham et al., 2003). After
selection of key wavelengths, filters corresponding to those
wavelengths can be implemented for acquisition of multi-
spectral images. Image processing algorithms are then
developed to enhance and analyze the images. With appropri-
ate image processing procedures, some features can be
extracted from multispectral images to more suitably repre-
sent the classification target and increase the classification
accuracy.

The main objective of this study was to develop a simple
method for differentiation of wholesome and systemically
diseased chickens based on multispectral images. The
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wavebands for four filters were selected using analysis of
chicken spectra in the visible region. Image processing
algorithms were developed to extract image features that
were then used to develop differentiation thresholds for the
identification  of systemically diseased chickens. Indepen-
dent images were then used to test the differentiation models.

MATERIALS AND METHODS
SAMPLE COLLECTION

Eviscerated chicken carcasses were identified and col-
lected by USDA−FSIS veterinarians from Allen Family
Foods (Cordova, Md.). A total of 660 chicken carcasses were
collected in three batches over a period of six months in 2003
and 2004, of which 328 were systemically diseased and 332
were wholesome carcasses. In the first batch, 117 wholesome
and 131 systemically diseased birds were collected; in the
second batch, 134 wholesome and 127 systemically diseased
birds were collected; and in the third batch, 81 wholesome
and 70 systemically diseased birds were collected. Systemi-
cally diseased birds showed external symptoms of septicemia
or toxemia. Septicemia is caused by the presence of
pathogenic microorganisms or their toxins in the blood-
stream, and toxemia is the result of toxins produced from
cells at a localized infection or from the growth of
microorganisms.

Chicken carcasses were placed in plastic bags, stored in
coolers, and covered with ice to minimize dehydration. Then
the bags were transported to the USDA−ARS Instrumenta-
tion and Sensing Laboratory (ISL) located in Beltsville,
Maryland, within 2 h for the experiments.

EXPERIMENTAL SYSTEMS

Vis/NIR Spectroscopic System
An Andor DV401−BV (Andor Technology, Belfast,

Northern Ireland) charge−coupled device (CCD) system,
consisting of a thermoelectrically cooled 1024 × 127 array
detector, was used with the manufacturer’s software to
acquire chicken sample spectra. Chicken samples were
illuminated by an external illumination assembly (model
6000, Spectra−Physics, Stratford, Conn.) consisting of a
100 W quartz tungsten halogen (QTH) filament lamp and a
condensing lens (f 1.8, 33 mm aperture) to collimate the QTH
light. A focusing assembly (model 77799, Spectra−Physics,
Stratford, Conn.) was used to focus the collimated light at one
end of a bifurcated fiber optic probe (C Technologies, Inc.,
Cedar Knolls, N.J.). The probe consisted of two concentric
groups of fiber optic bundles. The fibers of the outer bundle
transmitted the focused light to illuminate the chicken
surface from a distance of 20 mm. The fibers of the inner
optic bundle, each 100 �m in diameter, returned reflected
light to the CCD detector.

Multispectral Imaging System
The multispectral imaging system consisted of a Multi-

Spec Imager imaging spectrograph (Optical Insights, LLC,
Santa Fe, N.M.), a SpectraVideo SV 512 back−illuminated
CCD camera (PixelVision, Inc., Tigard, Ore.), a PMB−004
shutter and cooler control board, a PMB−007 serial interface
board, a PMJ−002 PCI bus data acquisition board, a LynxPCI
frame grabber, a Pentium III 600 PC computer (Gateway,
Poway, Cal.), and four 100 W tungsten halogen lights. Four
interference filters and an optical mirror assembly were used

to create four waveband images of the target that were ac-
quired simultaneously on a single CCD focal plane. The re-
sulting 16−bit multispectral image contained four
sub−images. The PixelView version 3.20 utility program
(PixelVision, Inc., Tigard, Ore.) was used to control camera
settings, such as integration time and image acquisition.

Vis/NIR SPECTRUM MEASUREMENT

The CCD spectroscopic system was used to collect
spectral measurements for 100 wholesome and 80 systemi-
cally diseased carcasses. The system was wavelength−cali-
brated using several emission peaks (435.84, 546.07, 640.23,
and 724.52 nm) from a high−intensity mercury neon lamp
before spectral measurements were taken. A dark reference
was taken with the light source turned off to compensate for
the zero energy signals. A white reference measurement was
taken by placing the fiber optic probe 20 mm from a 14 mm
thick piece of Spectralon reflectance target (Labsphere,
Sutton, N.H.). Spectra were recorded as relative reflectance
relative to the light reflected from the Spectralon reflectance
target, i.e.:
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The distance from the fiber optic probe to the sample was
20 mm. Each spectrum was measured by a single scan with
an exposure time of 120 ms. Each spectrum had 1024 data
points from 401.02 nm to 866.67 nm spaced 0.455 nm apart.

DETERMINATION OF THE BANDPASS FILTERS

The mean color differences (between wholesome and
systemically diseased birds) in CIELAB color space were
used to determine appropriate bandpass filters for the
multispectral  imaging system. The International Committee
on Illumination (CIE) tristimulus values X, Y, and Z of the
color of a sample were obtained by multiplying the spectral
irradiance of the light source, the reflectance of the chicken
sample, and the 1931 CIE color matching functions

.and,, zyx  In this study, the CIE tristimulus values were
calculated by numerical summation of mean spectra data, for
both wholesome and systemically diseased birds, over the
wavelengths in the visible spectrum (401 nm to 649 nm with
1 nm intervals):
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where k is a normalizing constant (k = 683 lm W−1), S(�) is
the spectral irradiance of the QTH light source (W m−2

nm−1), R(�) is the spectral reflectance distribution of the
chicken sample, and zyx and,, are color matching functions.

The CIE tristimulus values were used to calculate the
values for L* (lightness), a* (redness), and b* (yellowness)
in the CIE 1976 L*a*b* color space:
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 L* = 116(Y/Yn)1/3 −16 (5)

 a* = 500[(X/Xn)1/3 − (Y/Yn)1/3] (6)

 b* = 200[(Y/Yn)1/3 − (Z/Zn)1/3] (7)

where X, Y, and Z are tristimulus values of the given light
stimulus; Xn, Yn, and Zn are tristimulus values of the white
reference; and the quotients X/Xn, Y/Yn, and Z/Zn are all great-
er than 0.008856. Note that if any of the quotients had been
less than or equal to 0.008856, then a slightly different set of
equations would have been used.

The color difference between wholesome and systemical-
ly diseased birds in CIELAB space (� E) was calculated as
the Euclidean distance between the points in this three−di-
mensional space:

 ( ) ( ) ( ) ( )
2/1222



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Calculated using equation 8, figure 1 shows the plot of the
wavelength−by−wavelength color difference (� E) in the
visible region from 401 nm to 649 nm. The most significant
color differences in the plot occur in the areas of 576, 540, and
440 nm. Despite the significant color difference around
440 nm, a filter was deemed unsuitable in this area due to
system limitations. Compared to higher waveband regions,
the QTH light source has a lower output in the 440 nm region,
but using increased light intensity in this area would result in
saturation of the spectral signal in the visible spectral region
at longer wavelengths.

The greatest color difference occurred at 576 nm; the
closest market−available match was an interference filter
centered at 580 nm with 10 nm FWHM (full width at half
maximum). Two additional filters were selected based on
previous findings (Swatland, 1989; Liu and Chen, 2000,
2001) that identified various forms of myoglobin as major
determinants of chicken meat and skin color and associated
deoxymyoglobin,  oxymyoglobin, and metmyoglobin with
specific wavebands at 440, 545, and 485 nm, respectively.

Consequently, the filter parameters selected for this study
were 10 nm FWHM at 488 nm, 10 nm FWHM at 540 nm,
10 nm FWHM at 580 nm, and 10 nm FWHM at 610 nm. The
last, at 610 nm, was used for image masking purposes due to
the lower color difference at that waveband between
wholesome and systemically diseased chickens.

MULTISPECTRAL IMAGE COLLECTION AND IMAGE

REGISTRATION

After the wavebands were selected, the chicken carcass
images were taken, processed, and differentiated. Figure 2
shows the flowchart for multispectral image registration,
processing, and differentiation. The details of the flowchart
are described below.

The distance between the camera lens and the chicken
sample field of view was 1143 mm. Four tungsten halogen
lights were mounted 610 mm from the field of view, on a
rectangular frame. During image collection, a Spectralon
diffuse reflectance target of 99% reflectance (Labsphere,
North Sutton, N.H.) was used as a calibration target for
flat−field correction.

Since the image consists of four sub−images (one for each
wavelength) acquired simultaneously on the single CCD
focal plane, selection of a single integration time that results
in a clear image for each channel is essential. The proper
integration time was needed to reduce noise in the short−
wavelength sub−image (488 nm) and to avoid over−satura-
tion in the long−wavelength sub−image (610 nm) and in
flat−field calibration. From trial−and−error tests on some
chicken samples, it was found that the multispectral image
was safely below saturation level when the integration time
was set at 500 ms with high gain setting (approximately
5.5 electrons per analog−to−digital unit). These settings were
used for both flat−field calibration and acquisition of the
chicken images. The cooling temperature for the camera
control unit was set at 251 K.

Calibration and dark reference images were acquired prior
to collection of chicken images. The Spectralon reference
target with illumination was used for the calibration refer−

Wavelength (nm)

400 450 500 550 600 650

C
o

lo
r 

D
iff

er
en

ce

4

5

6

7

8

9
576

540

440

Figure 1. Wavelength−by−wavelength color difference between mean wholesome chicken spectrum and mean systemically diseased chicken spectrum,
showing the most significant color differences in the areas of 576, 540, and 440 nm.
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Region of interest (ROI) determination

Locating the lower ROI corner points

Identifying the upper and lower ROI boundaries

Defining the ROI area

Locating the upper ROI corner points

Multispectral image collection

Image registration for each waveband

Flat field correction for each sub−image

Identifying the chicken boundary

Image feature extraction for the ROI area

Using the threshold to differentiate images

Figure 2. Diagram of image collection, processing, and differentiation for systemically diseased chicken identification.

ence image, and the camera lens was covered for the dark ref-
erence image. For each chicken image, the chicken was hung
on the shackle against a black background so that the chicken
image could be easily extracted from the background.

Each original image consisted of four sub−images at 488,
540, 580, and 610 nm, arranged clockwise from the upper left
quadrant; pixel (x, y) coordinates were defined with (0, 0) in
the upper left corner of the image. For image registration, a
grid paper with four pre−defined points was used. In an image
of the grid paper, each sub−image showed the four points
each as one pixel. The 610 nm sub−image in the lower left
quadrant, a 214 × 241 pixel area defined by four boundary
points at (282, 20), (282, 260), (495, 260), and (495, 20), was
used as the base image in determining the offset vectors
between the base image and each of the three other
sub−images. For example, to determine the offset vector
between the base image and the 488 nm sub−image (upper
left quadrant), the difference in (x, y) coordinates was
calculated for each of the four points, and the average
(rounded to the nearest integer) was taken. The offset vectors
were used to determine the boundaries of the other three
sub−images corresponding to the boundaries of the base
image. The pixel size for each sub−image was 0.93 ×
0.93 mm.

MULTISPECTRAL IMAGE PROCESSING

Four image processing steps were performed, using
MATLAB 6.1 (MathWorks, Inc., Natick, Mass.), to obtain
single−channel sub−images for image analysis, as dia-

grammed in figure 3. First, flat−field correction was
performed according to the equation:

 
BW

BI
I

−
−= 0  (9)

where I0 is the original image, B is the dark reference image,
W is the white Spectralon reference image, and I is the rela-
tive reflectance image. Second, the 610 nm sub−image was
located and used to build a mask. On the 610 nm sub−image,
it was observed that the intensity for the black background
was always below 0.1 and the chicken intensity was always
above 0.1. Thus, a threshold value of 0.1 was used to create
the mask. Third, the mask was replicated in each quadrant of
the image using the vectors of image registration. This mask
was applied to the original image to remove the background.
This resulted in the background pixels of each image being
reset to zero; for other pixels, the intensity values remained
the same. Last, the four sub−images were separated using the
vectors of image registration.

After the sub−images were obtained, intensity contour
maps were generated for analysis. Figure 4 shows contour
maps of a wholesome chicken and a systemically diseased
chicken. It is evident that the major differences between
wholesome and systemically diseased chicken occur be-
tween the breast and lower abdomen. Therefore, for proper
identification  of systemically diseased chickens from whole-
some chickens, the region of interest (ROI) was defined
around this area. The image area above the ROI was termed
“upper region” (UR) and included the upper breast and
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Building

a mask

Replicating the mask

and image registration

Applying the mask to the original mage

Locating 610 nm

sub−image

Flat−field

correction

Original image

488 nm 540 nm

610 nm 580 nm

Image

registration

Figure 3. Image processing to obtain single−channel sub−images.

wings. The image area under the ROI was termed “lower re-
gion” (LR) and included the lower abdomen and thighs. The
area of the whole carcass (WC) consists of the ROI, UR, and
LR.

To find the ROI boundaries on an image, four corner
points must be located. The lower left and lower right corner
points were the conjunction points between abdomen and
thigh along the chicken boundary. The upper left and upper

right corner points were the conjunction points between
abdomen and wing along the chicken boundary. Figure 5
shows an example of the four corner points defining the ROI
on a chicken image. Using the mask image created from the
610 nm sub−image, the boundary of the chicken carcass was
identified.  As shown in figure 6, the lowest point of the
boundary, which was on the thigh, was then located as the
start point P1. From this start point along the boundary, seven
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Wholesome chicken

488 nm 540 nm

610 nm 580 nm

Systemically diseased chicken

488 nm 540 nm

610 nm 580 nm

0.5 − 0.6
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> 0.9

0.1 − 0.2
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0.7 − 0.8

0 .8  0.9

Relative
reflectance

−

Figure 4. Contour images showing relative reflectance for wholesome and systemically diseased chickens.

points were located, noted as P1(x1, y1) to P7(x7, y7). Because
the boundary was formed by discrete pixels (points) instead
of a continuous line, the distance d was determined by trial
and error. The distance d where d = xi − xi −1 was six pixels,
or approximately 5.58 mm. It was found that the corner point
would be missed if the distance d were shorter or longer than
six pixels. The following relational and logical operations
were carried out:
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 ( ) ( ) ( ) ( )( )[ ]{ }andorand LLLLL DCBAT =  (14)

Empirically, the logical value of TL was true only at the
conjunction point between chicken thigh and abdomen.
When the value of TL was true, the point P4 was determined
to be the lower left corner point. Otherwise, the point at the
boundary line and adjacent to the start point P1 was selected
as the new start point, and thus another seven points were
located to repeat the above operations. Similarly, the
following relational and logical operations were carried out
to determine the lower right corner point:

Region of interest (ROI)

Upper region (UR)

Lower region (LR)

Lower left corner point Lower right corner point

Upper left corner point Upper right corner point

Wholesome chicken

Lower left corner point Lower right corner point

Upper left corner point Upper right corner point

Systemically diseased chicken

Figure 5. Definition of classification areas by ROI corner points.



252 TRANSACTIONS OF THE ASABE

X

Y(0, 0)

Chicken
boundary line
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P2(x2, y2)

P3(x3, y3)
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P5(x5, y5)
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6 pixels (5.58 mm)
X

Y(0, 0)

X

Y
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Chicken boundary line

10 pixels (9.30 mm)

(0, 0)
Search for lower corner point P4 Search for upper corner point P1

Figure 6. Search operation for the ROI corner points.
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The operations were repeated until the logical value of TR
was true, at which the point P4 was then determined as the
lower right corner point.

From the lower left corner point PL(xi, yj), the point P1(xi −
i, yk) in the boundary line was located, and ten pixels
(approximately  9.30 mm) from P1(xi − i, yk) to P10(xi − i, yk −
9) were compared to the chicken boundary. This operation
was repeated until ten pixels from P1 to P10 were all within
the chicken boundary, which indicated the starting point of
the chicken wing. Therefore, the point P1 would be

determined as the upper left corner point. Similarly, from the
lower right corner point PR(xi, yj), the point P1(xi − 1, yk) in
the boundary line was located, and ten pixels from P1(xi − 1,
yk) to P10(xi − 1, yk + 9) were compared to the chicken
boundary. This operation was repeated until ten pixels from
P1 to P10 were all within the chicken boundary, so that the
point P1 was determined as the upper right corner point.
Figure 6 illustrates the search operation for the ROI corner
points.

After the four corner points were located, the straight line
between the two upper corner points and the straight line
between the two lower corner points defined the upper and
lower boundaries of the ROI, respectively. The right and left
ROI boundaries were defined by segments of the chicken
boundary lines between the two right corner points and two
left corner points.

THRESHOLD GENERATION
Four classification areas on each image were defined

using the ROI, UR, LR, and WC areas. Three image feature
types were calculated: average intensity (AI), average
normalization  (AN), and average difference normalization
(ADN). For AI, the average intensity was calculated for each
area. The AN value was the average of the ratio of intensity
between two wavelengths at each pixel in the area. The ADN
value was the average of the difference normalization of
intensity between two wavelengths at each pixel in the area.
The calculations for ANfi / fj and ADNfi / fj between the
sub−images I at the wavelengths fi and fj were as follows:
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Four pairs of wavelengths were used for AN and ADN:
I488/I610, I540/I610, I580/I610, and I540/I580. Twelve features
(combining feature type and wavelength) were calculated in
each of the four areas, for a total of 48 classification features
for each image.

After the first batch of 117 wholesome and 131 systemically
diseased chicken images was collected, the Classification and
Regression Trees (CART) decision tree statistic algorithm
(Breiman et al., 1984) was used to generate a threshold to
differentiate wholesome and systemically diseased chickens for
each of the 48 features, using the AnswerTree 3.0 program
(SPSS, Chicago, Ill.). CART was selected because this
algorithm has been applied successfully to data classification
(Balk and Elder, 2000; Eisenberg and McKone, 1998; Pietersma
et al., 2003; Yang et al., 2004). The maximum tree level was set
at one to obtain the threshold. After obtaining the thresholds for
the 48 features, the classification accuracies for each feature
were examined and the features with the highest accuracies
were selected for testing on the second batch of 134 wholesome
and 127 systemically diseased chicken images. Thresholds for
the 48 features were then updated using the combined data of
both first and second batches, and were tested for differentiation
of the 81 wholesome and 70 systemically diseased chicken
images in the third batch. These results were then compared to
differentiation results obtained using the original thresholds
tested on the third batch of chicken images.

RESULTS AND DISCUSSION
Table 1 summarizes significance t−test results for compar-

ing CIELAB values from wholesome and systemically
diseased chicken samples. The mean lightness value (L) of
the wholesome chickens was higher than that of systemically
diseased chickens. The mean redness value (a*) of the
wholesome chickens was lower than that of systemically
diseased chickens. However, no significant difference was
found between wholesome and systemically diseased chick-
en samples when the mean yellowness value (b*) was
compared. CIELAB values of these samples suggested that
the systemically diseased chickens were darker (lower L*)
and redder (higher a*) than wholesome chickens.

Table 2 shows the classification accuracies of the 48
features for the first batch of chicken images. The highest
classification accuracies resulted from using the average
intensity (AI) in the ROI and WC areas; among these, the 540
and 580 nm performed best. Therefore, thresholds for the AI
feature type, at 540 and 580 nm in both the ROI and WC
areas, were selected for testing on the second batch of images.
At both wavebands, the AI threshold was found to classify
better for the WC area, as seen in table 3, with AI540 classifi−

Table 1. The International Committee on Illumination L*
(lightness),  a* (redness), and b* (yellowness) characteristics

of wholesome and systemically diseased chickens.[a]

Poultry Carcass Condition L* a* b*

Wholesome
75.08 a 4.15 a 6.23 a
(0.42) (0.15) (0.29)

Systemically diseased
67.99 b 7.50 b 6.64 a
(0.82) (0.32) (0.46)

[a] Means within the same column followed by different letters are statisti-
cally different (P < 0.05). Values in parentheses are the standard errors of
the mean (100 wholesome and 80 systemically diseased chicken sam-
ples).

cation accuracies of 98.5% and 97.6% for wholesome and
systemically diseased images, respectively, and AI580 classi-
fication accuracies of 100.0% and 96.1% for wholesome and
systemically diseased images, respectively.

Table 4 shows the classification results of using the
combined data of the first and second batches to generate the
48 feature thresholds. These results are similar to those
shown in table 2. Again, AI is a better feature type for
classification than either AN or ADN; higher classification
accuracies were achieved using AI in the ROI and WC areas,
and in these areas, the 540 and 580 wavebands outperformed
the other two wavebands. The AI feature type in these
combinations was then tested on the third batch.

Table 2. Classification accuracies using different poultry
carcass regions for the 117 wholesome and 131 systemically

diseased chicken images collected in the first batch.

Image
Feature

Poultry
Carcass

Condition

Classification Accuracy (%)

Region of
Interest

Upper
Region

Lower
Region

Whole
Carcass

AI488
[a] Wholesome 89.7 80.3 83.8 86.3

Diseased 88.6 89.3 81.7 87.8

AI540
Wholesome 100.0[b] 94.9 94.9 94.0

Diseased 90.8 92.4 89.3 97.0

AI580
Wholesome 100.0 94.9 91.5 96.6

Diseased 92.4 92.4 92.4 95.4

AI610
Wholesome 98.3 94.0 99.2 94.9

Diseased 87.0 86.3 66.4 89.3

AN488/610
[c] Wholesome 57.3 71.8 51.3 57.3

Diseased 73.3 67.2 87.8 80.2

AN540/610
Wholesome 73.5 84.6 91.5 94.9

Diseased 93.1 90.1 87.8 83.2

AN580/610
Wholesome 88.0 98.3 89.7 90.6

Diseased 83.2 72.5 88.6 86.3

AN540/580
Wholesome 77.8 0.0 93.2 88.0

Diseased 68.7 100.0 30.5 45.0

ADN488/610
[d] Wholesome 57.3 71.8 77.8 54.7

Diseased 73.3 67.9 64.1 82.4

ADN540/610
Wholesome 73.5 84.6 91.5 95.7

Diseased 93.1 89.3 87.0 84.0

ADN580/610
Wholesome 88.9 98.3 89.7 84.6

Diseased 83.2 71.8 89.3 92.4

ADN540/580
Wholesome 82.1 90.6 92.3 99.2

Diseased 64.1 28.2 25.2 19.1
[a] AIfi = average intensity at wavelength fi.
[b] Bold numbers indicate the highest classification accuracies.
[c] ANfi /fj = average normalization at wavelengths fi and fj.
[d] ADNfi /fj = average difference normalization at wavelengths fi and fj.

Table 3. Classification accuracies using different poultry
carcass regions for the 134 wholesome and 127 systemically

diseased chicken images collected in the second batch.

Image
Feature

Poultry
Carcass

Condition

Classification Accuracy
Region of
Interest

Whole
Carcass

AI540
[a]

Wholesome 100.0% 98.5%[b]

Diseased 86.6% 97.6%
Threshold 0.2524 0.2400

AI580

Wholesome 100.0% 100.0%
Diseased 89.8% 96.1%
Threshold 0.2740 0.2415

[a] AIfi = average intensity at wavelength fi.
[b] Bold numbers indicate the highest classification accuracies.
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Table 4. Classification accuracies using different poultry carcass
regions for the 251 wholesome and 258 systemically diseased

chicken images collected in the first and second batches.

Image
Feature

Poultry
Carcass

Condition

Classification Accuracy (%)

Region of
Interest

Upper
Region

Lower
Region

Whole
Carcass

AI488
[a] Wholesome 91.6 84.1 88.1 91.2

Diseased 85.3 85.7 72.9 82.6

AI540
Wholesome 96.4[b] 92.8 95.2 97.6

Diseased 97.3 96.9 91.5 96.1

AI580
Wholesome 96.4 95.6 95.2 97.6

Diseased 97.7 93.4 91.1 97.7

AI610
Wholesome 96.0 94.4 89.6 94.8

Diseased 89.2 86.8 78.3 93.4

AN488/610
[c] Wholesome 30.3 61.8 70.1 54.6

Diseased 86.1 72.5 63.2 77.9

AN540/610
Wholesome 92.8 85.3 94.0 91.6

Diseased 81.0 91.9 91.1 89.9

AN580/610
Wholesome 94.4 84.5 93.2 92.8

Diseased 82.2 90.3 90.7 88.4

AN540/580
Wholesome 78.1 100.0 82.0 85.7

Diseased 51.2 5.8 36.8 42.3

ADN488/610
[d] Wholesome 30.7 60.6 72.5 53.4

Diseased 86.1 74.0 62.0 78.7

ADN540/610
Wholesome 90.8 87.7 94.0 96.4

Diseased 83.3 90.3 91.1 84.5

ADN580/610
Wholesome 94.8 92.4 93.2 92.0

Diseased 82.6 81.0 91.1 89.5

ADN540/580
Wholesome 92.8 98.4 93.2 91.6

Diseased 31.4 9.3 18.2 27.5
[a] AIfi = average intensity at wavelength fi.
[b] Bold numbers indicate the highest classification accuracies.
[c] ANfi /fj = average normalization at wavelengths fi and fj.
[d] ADNfi /fj = average difference normalization at wavelengths fi and fj.

Table 5 shows the results of using the original and updated
thresholds for the selected AI feature type at 540 and 580 nm
in both the ROI and WC areas. The best classification
accuracies were achieved using the updated threshold for
AI580 in the ROI area, with 96.3% and 98.6% for wholesome
and systemically diseased chicken images, respectively. The
classification accuracies achieved using the updated thresh-
old for AI540 in the ROI area are similarly high, with 96.3%
and 97.1% for wholesome and systemically diseased chicken
images, respectively.

Overall, the AI classification features (using single−wave-
band average intensities) performed better than the AN and

Table 5. Classification accuracies using different poultry carcass
regions for the 81 wholesome and 70 systemically diseased

chicken images collected in the third batch.

Image
Feature

Poultry
Carcass

Condition

Updated Threshold Original Threshold

Region of
Interest

Whole
Carcass

Region of
Interest

Whole
Carcass

AI540
[a]

Wholesome 96.3% 98.8% 100.0% 97.5%
Diseased 97.1% 90.0% 81.4% 95.7%
Threshold 0.2829 0.2337 0.2524 0.2400

AI580

Wholesome 96.3%[b] 98.8% 100.0% 98.8%
Diseased 98.6% 92.9% 85.7% 94.4%
Threshold 0.3026 0.2469 0.2740 0.2415

[a] AIfi = average intensity at the wavelength fi.
[b] Bold numbers indicate the highest classification accuracies.

ADN features (using band ratios) for the particular wave-
bands at 488, 540, 580, and 610 nm. In examining color dif-
ferences between wholesome and systemically diseased
images at any of one of these wavebands, average wholesome
AI is consistently higher than average systemically diseased
AI. The wavebands at 540 and 580 nm are known to reflect
differences between wholesome and systemically diseased
chicken condition (Liu and Chen, 2001). However, the AI
values at all of these wavebands change in the same direction
when comparing individual chickens, regardless of whole-
some or systemically diseased condition, i.e., the band ratios
using these particular wavebands show very little variation
with chicken condition. The waveband at 610 nm is not
known to correspond to changes in chicken condition and
thus was chosen for image masking purposes. The AN and
ADN features that use this band for normalization with either
the 540 or 580 nm waveband show reasonably high classifi-
cation rates.

The results show that AI values at both the 540 and 580 nm
wavebands can be useful in differentiating between whole-
some and systemically diseased chickens. Between these two
wavebands, the 580 nm waveband may perform slightly
better for identifying systemically diseased chickens, partic-
ularly using the ROI area. As the sample population used for
determining threshold values was increased, differentiation
using either waveband in the WC area performed reasonably
well, but not quite as well as in the ROI area for systemically
diseased chickens. Classification rates in the WC area using
AI540 and AI580 decreased by 5.7% and 1.5%, respectively,
when additional samples were used to determine the
threshold values, as can be seen in table 5. Figures 7 and 8
show the average intensity values for three image batches in
the 540 and 580 nm wavebands, respectively.

As shown in figures 7 and 8, AI values in the WC area show
slightly more overlap between wholesome and systemically
diseased birds than AI values in the ROI area, which appears to
result from the inclusion of the UR and LR areas within the WC
area. The UR and LR areas contribute a greater number of
lower−intensity pixels to the AI calculation for wholesome
birds, particularly with the wings in the UR area and thighs in
the LR area, as can be seen in the contour images in figure 4.
The updated threshold values in the WC area changed only by
−0.0063 and +0.0054 for AI540 and AI580, respectively, but
these small changes caused significant differences in the
systemically diseased accuracy rates.

When using the ROI differentiation thresholds originally
determined from the first batch of sample images, the AI540
and AI580 systemically diseased classification accuracies for
samples in the third batch were lower (81.4% and 85.7%,
respectively) than the wholesome classification accuracies of
100%. After thresholds were updated using samples from the
combined first and second batches, the AI540 and AI580
systemically diseased classification accuracies for samples
in the third batch improved significantly to 97.1% and 98.6%,
respectively. Examination of the data found that in the first
batch of sample images, as shown in figures 7 and 8, the AI
values for systemically diseased samples in the ROI area
showed a few isolated systemically diseased samples in the
high−intensity range overlapping with the low−intensity
range of the wholesome AI values. The AI540 and AI580 ROI
differentiation thresholds determined from this set of data
were thus slightly lower than the thresholds subsequently
determined from the combined first and second batches of



255Vol. 49(1): 245−257

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

Whole carcass
R

eg
io

n
 o

f 
in

te
re

st

Wholesome Systemically
diseased

Updated ROI
threshold

Original ROI
threshold

(a)

(b)

(c)

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

Whole carcass

R
eg

io
n

 o
f 

in
te

re
st

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

Whole carcass

R
eg

io
n

 o
f 

in
te

re
st

Figure 7. Average intensity values in the 540 nm waveband for (a) the first image batch, (b) the second image batch, and (c) the third image batch.

sample images. The combined data used to update the thresh-
olds thus accounts for the improvement observed in the septi-
cemia classification rates using the updated thresholds.

In addition to the high AI540 and AI580 classification
accuracies obtained using the ROI area, illumination factors
affecting chicken sample presentation also make the ROI
area more feasible for inspection based on image analysis
methods than the WC, UR, and LR areas. In presenting a bird
for image acquisition, providing uniform illumination across
the entire chicken carcass is a great challenge. In any
practical setup, shadows will always occur on peripheral
areas of the carcass, such as the wings, thighs, and sides of the
bird. Spectral features from the chicken breast area are least
affected by physical shape, and thus variations in intensity
are predominantly due to actual differences in the sample
condition. Although some simpler ROI location methods
could have been used, such as locating an arbitrarily sized
ROI centered around the centroid of the bird or a maximized
rectangular ROI within the boundaries of the chicken breast
area, the ROI determined by locating corner points of the
breast region was used in this study to maximize the area on

the chicken breast that could be used for classification while
excluding known areas of difficulty.

A single waveband filter at either 580 nm or 540 nm, and
one additional filter at a longer waveband for image masking
purposes (e.g., 610 nm) could be implemented for identifica-
tion of systemically diseased chickens by an automated
online multispectral imaging system using the simple AI
calculation.  By comparing the results in tables 3 and 5 with
previously reported results (Chao et al., 2002; Park et al.,
2002), the classification accuracy of the method in this study
is satisfactory. In determining the classification thresholds,
only one image feature at a time was presented to CART and
the resulting data always formed two clusters. Consequently,
only one threshold was determined for each image feature,
resulting in the use of CART with only one level. Although
this is a simplified use of CART, the method can be easily
implemented for generating new decision thresholds online
when chicken carcass variations are expected or when the
classification criteria are modified, such as by using multiple
image features for classification instead of a single image
feature, for identification of systemically diseased chickens.
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Figure 8. Average intensity values in the 580 nm waveband for (a) the first image batch, (b) the second image batch, and (c) the third image batch.

SUMMARY AND CONCLUSIONS
In this study, simple multispectral ROI features were

developed to differentiate wholesome and systemically
diseased chickens. Due to significant color differences
between wholesome and systemically diseased chickens at
488, 540, and 580 nm, interference filters were selected at
these wavebands for the multispectral imaging system; one
additional filter was selected at 610 nm for image masking
purposes. An algorithm was developed to find the ROI on the
multispectral images. Differentiation thresholds for identify-
ing wholesome and systemically diseased chickens were
determined using a CART decision tree algorithm for
48 features per image that were defined by a combination of
waveband, feature type, and classification area.

The AI540 and AI580 features in the ROI and WC areas
were found capable of differentiating between wholesome
and systemically diseased chicken images, while the AN and
ADN features were not as effective in differentiation. It was
observed that differentiation using the WC area was more
sensitive to changes in the differentiation threshold. The
AI540 feature achieved 96.3% and 97.1% accuracies in the

ROI area for wholesome and systemically diseased chickens
in the third batch, respectively, using thresholds determined
from the combined first and second batch images. Similarly,
the AI580 feature achieved 96.3% and 98.6% accuracies in
the ROI area for wholesome and systemically diseased
chickens, respectively, using thresholds determined from the
combined first and second batch images. This differentiation
method, using the simple calculation of average intensity,
appears well suited for testing in an automated on−line
multispectral  inspection system.
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